
Twitter Inc. | @manju

Caching At Twitter and moving towards
a persistent, in-memory key-value store
Manju Rajashekhar
@manju

Friday, November 30, 12

Twitter Inc. | @manju

Outline
Caching System Architecture
Twemcache
Twemproxy
Learnings
in-memory persistent store

Friday, November 30, 12

Twitter Inc. | @manju

Cache In Production
~30 TB of cache
> 2000 instances of caches
~500 machines
Average cache instance is 15G
~2 trillion queries/day
23 million queries/sec

Friday, November 30, 12

Twitter Inc. | @manju

Cache Systems
Cache is an Optimization for
CPU

Disk (write through / write back)

Friday, November 30, 12

Twitter Inc. | @manju

Cache API

CRUD API (memcache)

set(“key”, “value”)
get(“key”)

delete(“key”)
....

DS API (redis)

push(“key”, “element-1”)
pop(“key”)

get(“key”, “index”)
....

Friday, November 30, 12

Twitter Inc. | @manju

Caching System: Components

Protocol Encoder /
Decoder

Object Store

Routing / Sharding

Heartbeating / Liveness

Client Proxy Server

Simple distributed
components

Friday, November 30, 12

Twitter Inc. | @manju

Client, Proxy & Server

C

C

C

P

P

P

S

S

S

S

C

C

C

m m’ n

m >> n
m’ < n

Friday, November 30, 12

Twitter Inc. | @manju

Twemcache
Based on memcached 1.4.4
Running in production since Jan ’11
code: github.com/twitter/twemcache

Friday, November 30, 12

Twitter Inc. | @manju

Features
Custom Eviction Algorithm
Thread-local stats collector
Command Logger

Friday, November 30, 12

Twitter Inc. | @manju

Eviction (1)
New
Item

LRU Eviction

Friday, November 30, 12

Twitter Inc. | @manju

Eviction (2)

New Item

Items of different sizes

Friday, November 30, 12

Twitter Inc. | @manju

Eviction (3)

B1

B2

B3

Per Slabclass LRU Eviction = calcification, pseudo OOM

Friday, November 30, 12

Twitter Inc. | @manju

Slab Eviction
B1

B2

B3

Slab Eviction = deterministic behavior

Friday, November 30, 12

Twitter Inc. | @manju

Motivation
Keys accessed/updated/retrieved in the past 24hrs
- What data is hot and what is not?

- What should the heap size be to cache for 24 hours worth of data?

How many times and when is a key retrieved/updated after insertion?
- Explains why hit rate is so

- Determine a reasonable TTL

- Helps construct a heat map to decide cache size / hit rate trade off

What’s the stats per namespace? (“foo:” vs “bar:”)
- Does co-habitat make sense?

Friday, November 30, 12

Twitter Inc. | @manju

Async Command Logger
Log Format

172.25.135.205:55438 - [09/Jul/2012:18:15:45 -0700] "set foo 0 0 3" 1 6
172.25.135.205:55438 - [09/Jul/2012:18:15:46 -0700] "get foo" 0 14
172.25.135.205:55438 - [09/Jul/2012:18:15:57 -0700] "incr bar 1" 3 9
172.25.135.205:55438 - [09/Jul/2012:18:16:05 -0700] "set bar 0 0 1" 1 6
172.25.135.205:55438 - [09/Jul/2012:18:16:09 -0700] "incr bar 1" 0 1
172.25.135.205:55438 - [09/Jul/2012:18:16:13 -0700] "get bar" 0 12
....

Client IP Timestamp Type Key Status Size

Friday, November 30, 12

Twitter Inc. | @manju

single producer, consumer
worker1 logger

write ptr

read ptr

worker 2

write ptr

read ptr

...

Friday, November 30, 12

Twitter Inc. | @manju

Twemproxy (nutcracker)
Running in production since Nov ’11
Supports memcached and redis
code: github.com/twitter/twemproxy

Friday, November 30, 12

Twitter Inc. | @manju

Motivation

Unicorn

C

C

Unicorn

m >> n => 20mn

Unicorn

m n

Friday, November 30, 12

Twitter Inc. | @manju

Deployed as Local Proxy

U

C

C
U

m n

m >> n

P

P

U P

=> m

Friday, November 30, 12

Twitter Inc. | @manju

Twemproxy

P

get k1

delete k3, get k2, get k1get k2

delete k3

Friday, November 30, 12

Twitter Inc. | @manju

get k1

delete k3

time

get k2

get k1

delete k3
get k2

Pipelining

Friday, November 30, 12

Twitter Inc. | @manju

Twemproxy in Production
Many thousands machines
10 - 20 server pools per instance
Each instance typically handles:
few hundred client connections

proxies to few thousands servers

Eg: 60K -> 3K connections
~2K rps, 200 KB/sec (req), 1MB/sec (rsp)

Friday, November 30, 12

Twitter Inc. | @manju

Why Proxy?
Persistent server connections
faster client restarts

filter close from client

Protocol pipelining
Enables simple and dumb clients
Hides semantics of underlying cache pool
Dynamic configuration

Friday, November 30, 12

Twitter Inc. | @manju

Why not Proxy?
Extra network hop
Tradeoff latency for throughput

Pipelining is your friend

Friday, November 30, 12

Twitter Inc. | @manju

What did we learn?
Hide caches behind abstraction layer
Indirection (proxies) enables horizontal scaling
Proxies add overhead and extra network hop
Minimize network hops by colocating proxies next to server / clients
Use pipelining to overcome additional overhead

Friday, November 30, 12

Twitter Inc. | @manju

New System Characteristics
Predictable worst case latency
Replicated
Read my Write
Eventually consistent
Use case: read volume >> write volume

Friday, November 30, 12

Twitter Inc. | @manju

key/value scheme

struct value {
 map<short, binary> fields = {}
 map<short, long> fieldTimestamps = {}
}

key = (outer-key, inner-key)

Friday, November 30, 12

Twitter Inc. | @manju

Indirection and Colocation

C CC C

M

Friday, November 30, 12

Twitter Inc. | @manju

Horizontal Scaling

C CC C

M

C CC C

M

C CC C

M

M

Friday, November 30, 12

Twitter Inc. | @manju

Putting it all together

C CC C

M

C CC C

M

(1)(2)2 replicas

(3)

(4)

Friday, November 30, 12

Twitter Inc. | @manju

Putting it all together

C CC C

M

C CC C

M

Pub/
Sub

(1)
(2)

2 in-memory replicas

(3)

(4)

(5)

Persistent
Store

(5’)

Friday, November 30, 12

Twitter Inc. | @manju

Questions?

Friday, November 30, 12

