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Outline
Caching System Architecture
Twemcache
Twemproxy
Learnings
in-memory persistent store
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Cache In Production
~30 TB of cache
> 2000 instances of caches
~500 machines
Average cache instance is 15G
~2 trillion queries/day
23 million queries/sec
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Cache Systems
Cache is an Optimization for
CPU

Disk (write through / write back)

Friday, November 30, 12



Twitter Inc.   |   @manju

Cache API

CRUD API (memcache)

set(“key”, “value”)
get(“key”)

delete(“key”)
....

DS API (redis) 

push(“key”, “element-1”)
pop(“key”)

get(“key”, “index”)
....
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Caching System: Components

Protocol Encoder / 
Decoder

Object Store

Routing / Sharding

Heartbeating / Liveness

Client Proxy Server

Simple distributed 
components
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Client, Proxy & Server
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Twemcache
Based on memcached 1.4.4
Running in production since Jan ’11
code: github.com/twitter/twemcache
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Features
Custom Eviction Algorithm
Thread-local stats collector
Command Logger
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Eviction (1)
New 
Item

LRU Eviction
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Eviction (2)

New Item

Items of different sizes
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Eviction (3)

B1

B2

B3

Per Slabclass LRU Eviction = calcification,  pseudo OOM
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Slab Eviction
B1

B2

B3

Slab Eviction = deterministic behavior
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Motivation
Keys accessed/updated/retrieved in the past 24hrs
- What data is hot and what is not?

- What should the heap size be to cache for 24 hours worth of data?

How many times and when is a key retrieved/updated after insertion?
- Explains why hit rate is so

- Determine a reasonable TTL

- Helps construct a heat map to decide cache size / hit rate trade off

What’s the stats per namespace? (“foo:” vs “bar:”)
- Does co-habitat make sense?
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Async Command Logger
Log Format

172.25.135.205:55438 - [09/Jul/2012:18:15:45 -0700] "set foo 0 0 3" 1 6
172.25.135.205:55438 - [09/Jul/2012:18:15:46 -0700] "get foo" 0 14
172.25.135.205:55438 - [09/Jul/2012:18:15:57 -0700] "incr bar 1" 3 9
172.25.135.205:55438 - [09/Jul/2012:18:16:05 -0700] "set bar 0 0 1" 1 6
172.25.135.205:55438 - [09/Jul/2012:18:16:09 -0700] "incr bar 1" 0 1
172.25.135.205:55438 - [09/Jul/2012:18:16:13 -0700] "get bar" 0 12
....

Client IP Timestamp Type Key Status Size
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single producer, consumer
worker1 logger

write ptr

read ptr

worker 2

write ptr

read ptr

...
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Twemproxy (nutcracker)
Running in production since Nov ’11
Supports memcached and redis
code: github.com/twitter/twemproxy
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Motivation

Unicorn
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Deployed as Local Proxy
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Twemproxy

P

get k1

delete k3, get k2, get k1get k2

delete k3
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get k1

delete k3

time

get k2

get k1

delete k3
get k2

Pipelining
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Twemproxy in Production
Many thousands machines
10 - 20 server pools per instance
Each instance typically handles:
few hundred client connections

proxies to few thousands servers

Eg: 60K -> 3K connections
~2K rps, 200 KB/sec (req), 1MB/sec (rsp)
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Why Proxy?
Persistent server connections
faster client restarts

filter close from client

Protocol pipelining
Enables simple and dumb clients
Hides semantics of underlying cache pool
Dynamic configuration
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Why not Proxy?
Extra network hop
Tradeoff latency for throughput

Pipelining is your friend
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What did we learn?
Hide caches behind abstraction layer
Indirection (proxies) enables horizontal scaling
Proxies add overhead and extra network hop
Minimize network hops by colocating proxies next to server / clients
Use pipelining to overcome additional overhead
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New System Characteristics
Predictable worst case latency
Replicated
Read my Write
Eventually consistent
Use case: read volume >> write volume
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key/value scheme

struct value {
     map<short, binary> fields = {}
     map<short, long> fieldTimestamps = {}
} 

key = (outer-key, inner-key)
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Indirection and Colocation
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Horizontal Scaling
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Putting it all together

C CC C

M
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M

(1)(2)2 replicas

(3)

(4)
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Putting it all together

C CC C

M

C CC C

M

Pub/
Sub

(1)
(2)

2 in-memory replicas 

(3)

(4)

(5)

Persistent
Store

(5’)
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Questions?
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