Science in the Clouds and Beyond

Lavanya Ramakrishnan

Computational Research Division (CRD) & National Energy Research Scientific Computing Center (NERSC) Lawrence Berkeley National Lab

The goal of Magellan was to determine the appropriate role for cloud computing for science

 $0\% \ 10\% \ 20\% \ 30\% \ 40\% \ 50\% \ 60\% \ 70\% \ 80\% \ 90\%$

	Program Office		Pro
U	Advanced Scientific Computing Research	17%	High
	Biological and Environmental Research	9%	Nuc
	Basic Energy Sciences -Chemical Sciences	10%	Adv
	Fusion Energy Sciences	10%	Oth

Program Office	
High Energy Physics	20%
Nuclear Physics	13%
Advanced Networking Initiative (ANI) Project	3%
Other	14%

Magellan was architected for flexibility and to support research

Science + Clouds = ?

Business model for Science Performance and Cost

Data Intensive Science

Technologies from Cloud

Scientific applications with minimal communication are best suited for clouds

Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud, CloudCom 2010

Scientific applications with minimal communication are best suited for clouds

The principle decrease in bandwidth occurs when switching to TCP over IB.

HPCC PingPong BW

Evaluating Interconnect and Virtualization Performance for High Performance Computing, ACM Perf Review 2012

Ethernet connections are unable to cope with significant amounts of network connection

The principle increase in latency occurs for TCP over IB even at mid-range concurrency

Latency is affected by contention by a greater amount than the bandwidth

Clouds require significant programming and system administration support

- STAR performed Real-time analysis of data coming from Brookhaven Nat. Lab
- First time data was analyzed in realtime to a high degree
- Leveraged existing OS image from NERSC system
- Started out with 20 VMs at NERSC and expanded to ANL.

On-demand access for scientific applications might be difficult if not impossible

Peak Cores Required

12

computational research division

Office of ERG Science

Public clouds can be more expensive than inhouse large systems

Component	Cost
Compute Systems (1.38B hours)	\$180,900,000
HPSS (17 PB)	\$12,200,000
File Systems (2 PB)	\$2,500,000
Total (Annual Cost)	\$195,600,000

Assumes 85% utilization and zero growth in HPSS and File System data. Doesn't include the 2x-10x performance impact that has been measured. This still only captures about 65% of NERSC's \$55M annual budget. **No consulting staff, no administration, no support.**

Cloud is a business model and can be applied to HPC centers

	Traditional Enterprise IT	HPC Centers
Typical Load Average	30% *	90%
Computational Needs	Bounded computing requirements – Sufficient to meet customer demand or transaction rates.	Virtually unbounded requirements – Scientist always have larger, more complicated problems to simulate or analyze.
Scaling Approach	Scale-in. Emphasis on consolidating in a node using virtualization	Scale-Out Applications run in parallel across multiple nodes.

	Cloud	HPC Centers
NIST Definition	Resource Pooling, Broad network access, measured service, rapid elasticity, on-demand self service	Resource Pooling, Broad network access, measured service. Limited: rapid elasticity, on- demand self service
Workloads	High throughput modest data workloads	High Synchronous large concurrencies parallel codes with significant I/O and communication
Software Stack	Flexible user managed custom software stacks	Access to parallel file systems and low-latency high bandwidth interconnect. Preinstalled, pre- tuned application software stacks for performance

Science + Clouds = ?

Business model for Science Performance and Cost

Data Intensive Science

Technologies from Cloud

MapReduce shows promise but current implementations have gaps for scientific applications

High throughput workflows

Scaling up from desktops

File system: non POSIX Language: Java Input and output formats: mostly line-oriented text Streaming mode: restrictive i/p and o/p model Data locality: what happens when multiple inputs?

High performance file systems can be used with MapReduce at lower concurrency

Data operations impacts the performance differences

Data centric infrastructure will need to evolve to handle large scientific data volumes

Joint Genome Institute, Advance Light Source, etc are all facing a data tsunami

Cloud is a business model and can be applied at DOE supercomputing centers

- Current day cloud computing solutions have gaps for science
 - performance, reliability, stability
 - programming models are difficult for legacy apps
 - security mechanisms and policies
- HPC centers can adopt some of the technologies and mechanisms
 - support for data-intensive workloads
 - allow custom software environments
 - provide different levels of service

Acknowledgements

- US Department of Energy DE-AC02-05CH11232
- Magellan
 - Shane Canon, Tina Declerck, Iwona Sakrejda, Scott Campbell, Brent Draney
- Amazon Benchmarking
 - Krishna Muriki, Nick Wright, John Shalf, Keith Jackson, Harvey Wasserman, Shreyas Cholia
- Magellan/ANL
 - Susan Coghlan, Piotr T Zbiegiel, Narayan Desai, Rick Bradshaw, Anping Liu
- NERSC
 - Jeff Broughton, Kathy Yelick
- Applications
 - Jared Wilkening, Gabe West, Ed Holohan, Doug Olson, Jan Balewski, STAR collaboration, K. John Wu, Alex Sim, Prabhat, Suren Byna, Victor Markowitz

