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Motivation
 MapReduce can’t express recursion/iteration
 Lots of interesting programs need loops

 graph algorithms
 clustering
 machine learning
 recursive queries (CTEs, datalog, WITH clause)

 Dominant solution: Use a driver program outside 
of MapReduce

 Hypothesis: making MapReduce loop-aware 
affords optimization
 lays a foundation for scalable implementations of 

recursive languages
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Example 1: PageRank
Rank Table  R0

Rank Table  R3

url rank

www.a.com 2.13

www.b.com 3.89

www.c.com 2.60

www.d.com 2.60

www.e.com 2.13

url_src url_dest

www.a.com www.b.com

www.a.com www.c.com

www.c.com www.a.com

www.e.com www.c.com

www.d.com www.b.com

www.c.com www.e.com

www.e.com www.c.com

www.a.com www.d.com

Linkage Table L

Ri L

Ri.rank = Ri.rank/γurlCOUNT(url_dest)

Ri.url = L.url_src

π(url_dest, γurl_destSUM(rank))

Ri+1 

url rank

www.a.com 1.0

www.b.com 1.0

www.c.com 1.0

www.d.com 1.0

www.e.com 1.0
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PageRank Implementation on MapReduce

M

M

M

M

M

r

r

Ri

L-split1

L-split0

M

M

r

r

i=i+1 Converged?

Join & compute rank 

Aggregate  Fixpoint evaluation 

Client

done

r

r

M

Count
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What’s the problem?

1. They are loaded on each iteration
2. They are shuffled on each iteration
3. Also, fixpoint evaluated as a separate MapReduce job per 

iteration

m

m

m

Ri

L-split1

L-split0

M

M

r

r

1.

2.
3.

L and Count are loop invariants, but

r

r M

M

r

r

m
Count
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Example 2: Transitive Closure

Friend Find all transitive friends of Eric

{Eric, Elisa} 

{Eric, Tom
  Eric, Harry}

{}

R1

R0 {Eric, Eric} 

R2

R3

(semi-naïve evaluation)
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Transitive Closure on MapReduce

M

M

M

M

M

r

r

Si

Friend1

Friend0

i=i+1

Anything new?

Join
Dup-elim  

Client

done

r

r

(compute next generation of friends) (remove the ones 
we’ve already seen)

M



05/03/11 Yingyi Bu,  UCI 9

What’s the problem?

1. Friend is loaded on each iteration
2. Friend is shuffled on each iteration

Friend is loop invariant, but

M

M

M

M

M

r

r

Si

Friend1

Friend0

Join
Dupe-elim  

r

r

1.
2.

M
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Example 3: k-means

M

M

M

P0

i=i+1

ki -  ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration iki

ki

ki

ki

ki+1
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What’s the problem?

M

M

M

P0

i=i+1

ki -  ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration ikiki

ki

ki

ki+1

1. P is loaded on each iteration
P is loop invariant, but

1.
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Push loops into MapReduce!

 Architecture
 Cache loop-invariant data
 Scheduling
 Fault-tolerance
 Programming Model
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HaLoop Architecture
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Inter-iteration caching

Mapper input cache (MI)

Mapper output cache (MO)

Reducer input cache (RI)

Reducer output cache (RO)

M

M

M

r

r

…
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RI: Reducer Input Cache

 Provides:
 Access to loop invariant data without map/shuffle

 Data:
 Reducer function

 Assumes: 
1. Static partitioning (implies: no new nodes)
2. Deterministic mapper implementation

 PageRank
 Avoid loading and shuffling the web graph at 

every iteration
 Transitive Closure

 Avoid loading and shuffling the friends graph at 
every iteration

 K-means
 No help

…
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Reducer Input Cache Benefit

Friends-of-friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Overall run time
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Reducer Input Cache Benefit

Friends-of-Friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Join step only

Livejournal, 12GB
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Reducer Input Cache Benefit

Friends-of-friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Reduce and Shuffle of Join Step

Livejournal, 12GB
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RO: Reducer Output Cache
 Provides:

 Distributed access to output of previous 
iterations

 Used By:
 Fixpoint evaluation

 Assumes: 
1. Partitioning constant across iterations
2. Reducer output key functionally determines 

Reducer input key

 PageRank
 Allows distributed fixpoint evaluation
 Obviates extra MapReduce job 

 Transitive Closure
 No help

 K-means
 No help

…
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Reducer Output Cache Benefit

F
ixpoint evaluation (s)

Iteration # Iteration #

Livejournal dataset

50 EC2 small instances

Freebase dataset

90 EC2 small instances
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MI: Mapper Input Cache
 Provides:

 Access to non-local mapper input on later 
iterations

 Data for:
 Map function

 Assumes: 
1. Mapper input does not change

 PageRank
 No help

 Transitive Closure
 No help

 K-means
 Avoids non-local data reads on iterations > 0

…
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Mapper Input Cache Benefit

5% non-local data reads; 
~5% improvement
5% non-local data reads; 
~5% improvement

However, Facebook has 
70% non-local data 
reads!!
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Loop-aware Task Scheduling

Input:  Node node, int iteration
Global variable: HashMap<Node, List<Parition>> last, HashMaph<Node, 

List<Partition>> current
1: if (iteration ==0) {
2: Partition part = StandardMapReduceSchedule(node);
3: current.add(node, part);
4: }else{
5:  if (node.hasFullLoad()) {
6: Node substitution = findNearbyNode(node);
7: last.get(substitution).addAll(last.remove(node));
8: return;
9: }
10: if (last.get(node).size()>0) {
11: Partition part = last.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: list.remove(part);
15: }
16: }

The same as 
MapReduce

Find a substitution

Iteration-local 
Schedule
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Fault-tolerance (task failures)

M

M

M

r

r

M

M

M

r

M

M

M

r

Cache reloading Task re-execution

Task failure
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Fault-tolerance (node failures)

M

M

r

r

M

M

r

M

M

r

Cache reloading
Task re-execution

node failure
M
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Programming Model

 Mapper/reducer stay the same!
 Touch points

– Input/Output: for each <iteration, step>

– Cache filter: which tuple to cache?

– Distance function: optional

 Nested job containing child jobs as loop body
 Minimize extra programming efforts
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Related Work: Twister [Ekanayake HPDC 2010]

 Pipelining mapper/reducer
 Termination condition evaluated by main()

13. while(!complete){
14. monitor = driver.runMapReduceBCast(cData);
15. monitor.monitorTillCompletion();

16. DoubleVectorData newCData = ((KMeansCombiner) driver
                       .getCurrentCombiner()).getResults();
17. totalError = getError(cData, newCData);
18. cData = newCData;
19.   if (totalError < THRESHOLD) {
20.        complete = true;
21.        break;
22.   }
23. }

O(k)
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In Detail: PageRank (Twister)

while (!complete) {
  // start the pagerank map reduce process
  monitor = driver.runMapReduceBCast(new   
        BytesValue(tmpCompressedDvd.getBytes()));
  monitor.monitorTillCompletion();
  // get the result of process
  newCompressedDvd = ((PageRankCombiner)   
        driver.getCurrentCombiner()).getResults(); 
  // decompress the compressed pagerank values
  newDvd = decompress(newCompressedDvd); 
  tmpDvd = decompress(tmpCompressedDvd);
  totalError = getError(tmpDvd, newDvd); 
  // get the difference between new and old pagerank values
  if (totalError < tolerance) {
    complete = true;
  }
  tmpCompressedDvd = newCompressedDvd;
}

O(N) in the size 
of the graph

run MR

term. 
cond.
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Related Work: Spark [Zaharia HotCloud 2010] 

 Reduction output collected at driver program
 “…does not currently support a grouped reduce 

operation as in MapReduce”

val spark = new SparkContext(<Mesos master>)
var count = spark.accumulator(0)
for (i <- spark.parallelize(1 to 10000, 10)) {
  val x = Math.random * 2 - 1
  val y = Math.random * 2 - 1
  if (x*x + y*y < 1) count += 1
}
println("Pi is roughly " + 4 * count.value / 10000.0)

all output sent 
to driver.
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Related Work: Pregel [Malewicz SIGMOD 2010]

 Graphs only
 clustering: k-means, canopy, DBScan

 Assumes each vertex has access to outgoing edges
 So an edge representation …

requires offline preprocessing 
 perhaps using MapReduce

Edge(from, to)
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Related Work: BOOM [Alvaro EuroSys 10]

 Distributed computing based on Overlog 
(Datalog + temporal logic + more)

 Recursion supported naturally
– app: API-compliant implementation of MR
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Conclusions
 Relatively simple changes to MapReduce/Hadoop can 

support iterative/recursive programs
 TaskTracker (Cache management) 
 Scheduler (Cache awareness)
 Programming model (multi-step loop bodies, cache control)

 Optimizations
 Caching reducer input realizes the largest gain
 Good to eliminate extra MapReduce step for termination checks
 Mapper input cache benefit inconclusive; need a busier cluster

 Future Work
 Iteration & Recursion on top of Hyracks core!
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Hyracks [Borkar et al., ICDE'11]
 Partitioned-Parallel Platform for data-intensive computing

 Flexible (DAGs, location constraints)
 Extensible (“micro-kernel” core,  online-aggregation plugin 

(VLDB'11), B-tree plugin, R-tree plugin, Dataflow plugin...), an 
iteration/recursion plugin?

 Jobs
 Dataflow DAG of operators and connectors
 Can set location constraints
 Can use a library of operators: joins, group-by, sort and so on

 V.s. “competitors”
 V.s. Hadoop: more flexible model and less pressimistic
 V.s. Dryad: support data as first class citizens
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Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

