
HaLoop: Efficient Iterative
Data Processing On Large

Clusters

 Yingyi Bu, UC Irvine

 Bill Howe, UW

 Magda Balazinska, UW

 Michael D. Ernst, UW

http://clue.cs.washington.edu/

QuickTime and aﾪ
 decompressor

are needed to see this picture. http://escience.washington.edu/

May-2011, UC Berkeley Cloud Computing Seminar

Horizon

Outline

 Motivation
 Caching & scheduling
 Fault-tolerance
 Programming model
 Related work
 Conclusion
 Cloud Computing Projects in UCI

05/03/11 Yingyi Bu, UCI 3

Motivation
 MapReduce can’t express recursion/iteration
 Lots of interesting programs need loops

 graph algorithms
 clustering
 machine learning
 recursive queries (CTEs, datalog, WITH clause)

 Dominant solution: Use a driver program outside
of MapReduce

 Hypothesis: making MapReduce loop-aware
affords optimization
 lays a foundation for scalable implementations of

recursive languages

05/03/11 Yingyi Bu, UCI 4

Example 1: PageRank
Rank Table R0

Rank Table R3

url rank

www.a.com 2.13

www.b.com 3.89

www.c.com 2.60

www.d.com 2.60

www.e.com 2.13

url_src url_dest

www.a.com www.b.com

www.a.com www.c.com

www.c.com www.a.com

www.e.com www.c.com

www.d.com www.b.com

www.c.com www.e.com

www.e.com www.c.com

www.a.com www.d.com

Linkage Table L

Ri L

Ri.rank = Ri.rank/γurlCOUNT(url_dest)

Ri.url = L.url_src

π(url_dest, γurl_destSUM(rank))

Ri+1

url rank

www.a.com 1.0

www.b.com 1.0

www.c.com 1.0

www.d.com 1.0

www.e.com 1.0

05/03/11 Yingyi Bu, UCI 5

PageRank Implementation on MapReduce

M

M

M

M

M

r

r

Ri

L-split1

L-split0

M

M

r

r

i=i+1 Converged?

Join & compute rank

Aggregate Fixpoint evaluation

Client

done

r

r

M

Count

05/03/11 Yingyi Bu, UCI 6

What’s the problem?

1. They are loaded on each iteration
2. They are shuffled on each iteration
3. Also, fixpoint evaluated as a separate MapReduce job per

iteration

m

m

m

Ri

L-split1

L-split0

M

M

r

r

1.

2.
3.

L and Count are loop invariants, but

r

r M

M

r

r

m
Count

05/03/11 Yingyi Bu, UCI 7

Example 2: Transitive Closure

Friend Find all transitive friends of Eric

{Eric, Elisa}

{Eric, Tom
 Eric, Harry}

{}

R1

R0 {Eric, Eric}

R2

R3

(semi-naïve evaluation)

05/03/11 Yingyi Bu, UCI 8

Transitive Closure on MapReduce

M

M

M

M

M

r

r

Si

Friend1

Friend0

i=i+1

Anything new?

Join
Dup-elim

Client

done

r

r

(compute next generation of friends) (remove the ones
we’ve already seen)

M

05/03/11 Yingyi Bu, UCI 9

What’s the problem?

1. Friend is loaded on each iteration
2. Friend is shuffled on each iteration

Friend is loop invariant, but

M

M

M

M

M

r

r

Si

Friend1

Friend0

Join
Dupe-elim

r

r

1.
2.

M

05/03/11 Yingyi Bu, UCI 10

Example 3: k-means

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration iki

ki

ki

ki

ki+1

05/03/11 Yingyi Bu, UCI 11

What’s the problem?

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration ikiki

ki

ki

ki+1

1. P is loaded on each iteration
P is loop invariant, but

1.

05/03/11 Yingyi Bu, UCI 12

Push loops into MapReduce!

 Architecture
 Cache loop-invariant data
 Scheduling
 Fault-tolerance
 Programming Model

05/03/11 Yingyi Bu, UCI 13

HaLoop Architecture

05/03/11 Yingyi Bu, UCI 14

Inter-iteration caching

Mapper input cache (MI)

Mapper output cache (MO)

Reducer input cache (RI)

Reducer output cache (RO)

M

M

M

r

r

…

05/03/11 Yingyi Bu, UCI 15

RI: Reducer Input Cache

 Provides:
 Access to loop invariant data without map/shuffle

 Data:
 Reducer function

 Assumes:
1. Static partitioning (implies: no new nodes)
2. Deterministic mapper implementation

 PageRank
 Avoid loading and shuffling the web graph at

every iteration
 Transitive Closure

 Avoid loading and shuffling the friends graph at
every iteration

 K-means
 No help

…

05/03/11 Yingyi Bu, UCI 16

Reducer Input Cache Benefit

Friends-of-friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Overall run time

05/03/11 Yingyi Bu, UCI 17

Reducer Input Cache Benefit

Friends-of-Friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Join step only

Livejournal, 12GB

05/03/11 Yingyi Bu, UCI 18

Reducer Input Cache Benefit

Friends-of-friends query

Billion Triples Dataset (120GB)

90 small instances on EC2

Reduce and Shuffle of Join Step

Livejournal, 12GB

05/03/11 Yingyi Bu, UCI 19

RO: Reducer Output Cache
 Provides:

 Distributed access to output of previous
iterations

 Used By:
 Fixpoint evaluation

 Assumes:
1. Partitioning constant across iterations
2. Reducer output key functionally determines

Reducer input key

 PageRank
 Allows distributed fixpoint evaluation
 Obviates extra MapReduce job

 Transitive Closure
 No help

 K-means
 No help

…

05/03/11 Yingyi Bu, UCI 20

Reducer Output Cache Benefit

F
ixpoint evaluation (s)

Iteration # Iteration #

Livejournal dataset

50 EC2 small instances

Freebase dataset

90 EC2 small instances

05/03/11 Yingyi Bu, UCI 21

MI: Mapper Input Cache
 Provides:

 Access to non-local mapper input on later
iterations

 Data for:
 Map function

 Assumes:
1. Mapper input does not change

 PageRank
 No help

 Transitive Closure
 No help

 K-means
 Avoids non-local data reads on iterations > 0

…

05/03/11 Yingyi Bu, UCI 22

Mapper Input Cache Benefit

5% non-local data reads;
~5% improvement
5% non-local data reads;
~5% improvement

However, Facebook has
70% non-local data
reads!!

05/03/11 Yingyi Bu, UCI 23

Loop-aware Task Scheduling

Input: Node node, int iteration
Global variable: HashMap<Node, List<Parition>> last, HashMaph<Node,

List<Partition>> current
1: if (iteration ==0) {
2: Partition part = StandardMapReduceSchedule(node);
3: current.add(node, part);
4: }else{
5: if (node.hasFullLoad()) {
6: Node substitution = findNearbyNode(node);
7: last.get(substitution).addAll(last.remove(node));
8: return;
9: }
10: if (last.get(node).size()>0) {
11: Partition part = last.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: list.remove(part);
15: }
16: }

The same as
MapReduce

Find a substitution

Iteration-local
Schedule

05/03/11 Yingyi Bu, UCI 24

Fault-tolerance (task failures)

M

M

M

r

r

M

M

M

r

M

M

M

r

Cache reloading Task re-execution

Task failure

05/03/11 Yingyi Bu, UCI 25

Fault-tolerance (node failures)

M

M

r

r

M

M

r

M

M

r

Cache reloading
Task re-execution

node failure
M

05/03/11 Yingyi Bu, UCI 26

Programming Model

 Mapper/reducer stay the same!
 Touch points

– Input/Output: for each <iteration, step>

– Cache filter: which tuple to cache?

– Distance function: optional

 Nested job containing child jobs as loop body
 Minimize extra programming efforts

05/03/11 Yingyi Bu, UCI 27

Related Work: Twister [Ekanayake HPDC 2010]

 Pipelining mapper/reducer
 Termination condition evaluated by main()

13. while(!complete){
14. monitor = driver.runMapReduceBCast(cData);
15. monitor.monitorTillCompletion();

16. DoubleVectorData newCData = ((KMeansCombiner) driver
 .getCurrentCombiner()).getResults();
17. totalError = getError(cData, newCData);
18. cData = newCData;
19. if (totalError < THRESHOLD) {
20. complete = true;
21. break;
22. }
23. }

O(k)

05/03/11 Yingyi Bu, UCI 28

In Detail: PageRank (Twister)

while (!complete) {
 // start the pagerank map reduce process
 monitor = driver.runMapReduceBCast(new
 BytesValue(tmpCompressedDvd.getBytes()));
 monitor.monitorTillCompletion();
 // get the result of process
 newCompressedDvd = ((PageRankCombiner)
 driver.getCurrentCombiner()).getResults();
 // decompress the compressed pagerank values
 newDvd = decompress(newCompressedDvd);
 tmpDvd = decompress(tmpCompressedDvd);
 totalError = getError(tmpDvd, newDvd);
 // get the difference between new and old pagerank values
 if (totalError < tolerance) {
 complete = true;
 }
 tmpCompressedDvd = newCompressedDvd;
}

O(N) in the size
of the graph

run MR

term.
cond.

05/03/11 Yingyi Bu, UCI 29

Related Work: Spark [Zaharia HotCloud 2010]

 Reduction output collected at driver program
 “…does not currently support a grouped reduce

operation as in MapReduce”

val spark = new SparkContext(<Mesos master>)
var count = spark.accumulator(0)
for (i <- spark.parallelize(1 to 10000, 10)) {
 val x = Math.random * 2 - 1
 val y = Math.random * 2 - 1
 if (x*x + y*y < 1) count += 1
}
println("Pi is roughly " + 4 * count.value / 10000.0)

all output sent
to driver.

05/03/11 Yingyi Bu, UCI 30

Related Work: Pregel [Malewicz SIGMOD 2010]

 Graphs only
 clustering: k-means, canopy, DBScan

 Assumes each vertex has access to outgoing edges
 So an edge representation …

requires offline preprocessing
 perhaps using MapReduce

Edge(from, to)

05/03/11 Yingyi Bu, UCI 31

Related Work: BOOM [Alvaro EuroSys 10]

 Distributed computing based on Overlog
(Datalog + temporal logic + more)

 Recursion supported naturally
– app: API-compliant implementation of MR

05/03/11 Yingyi Bu, UCI 32

Conclusions
 Relatively simple changes to MapReduce/Hadoop can

support iterative/recursive programs
 TaskTracker (Cache management)
 Scheduler (Cache awareness)
 Programming model (multi-step loop bodies, cache control)

 Optimizations
 Caching reducer input realizes the largest gain
 Good to eliminate extra MapReduce step for termination checks
 Mapper input cache benefit inconclusive; need a busier cluster

 Future Work
 Iteration & Recursion on top of Hyracks core!

05/03/11 Yingyi Bu, UCI 33

Hyracks [Borkar et al., ICDE'11]
 Partitioned-Parallel Platform for data-intensive computing

 Flexible (DAGs, location constraints)
 Extensible (“micro-kernel” core, online-aggregation plugin

(VLDB'11), B-tree plugin, R-tree plugin, Dataflow plugin...), an
iteration/recursion plugin?

 Jobs
 Dataflow DAG of operators and connectors
 Can set location constraints
 Can use a library of operators: joins, group-by, sort and so on

 V.s. “competitors”
 V.s. Hadoop: more flexible model and less pressimistic
 V.s. Dryad: support data as first class citizens

34

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

